Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato.

Identifieur interne : 000317 ( Main/Exploration ); précédent : 000316; suivant : 000318

A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato.

Auteurs : Chenchen Wang [République populaire de Chine] ; Hongjuan Gao [République populaire de Chine] ; Zhaohui Chu [République populaire de Chine] ; Changquan Ji [République populaire de Chine] ; Yang Xu [République populaire de Chine] ; Weilin Cao [République populaire de Chine] ; Shumei Zhou [République populaire de Chine] ; Yunzhi Song [République populaire de Chine] ; Hongmei Liu [République populaire de Chine] ; Changxiang Zhu [République populaire de Chine]

Source :

RBID : pubmed:33118686

Abstract

Nonspecific lipidtransfer proteins (nsLTPs), which are small, cysteine-rich proteins, belong to the pathogenesis-related protein family, and several of them act as positive regulators during plant disease resistance. However, the underlying molecular mechanisms of these proteins in plant immune responses are unclear. In this study, a typical nsLTP gene, StLTP10, was identified and functionally analysed in potato. StLTP10 expression was significantly induced by Phytophthora infestans, which causes late blight in potato, and defence-related phytohormones, including abscisic acid (ABA), salicylic acid, and jasmonic acid. Characterization of StLTP10-overexpressing and knockdown lines indicated that StLTP10 positively regulates plant resistance to P. infestans. This resistance was coupled with enhanced expression of reactive oxygen species scavenging- and defence-related genes. Furthermore, we identified that StLTP10 physically interacts with ABA receptor PYL4 and affects its subcellular localization. These two proteins work together to regulate stomatal closure during pathogen infection. Interestingly, we also found that wound-induced protein kinase interacts with StLTP10 and positively regulates its protein abundance. Taken together, our results provide insight into the role of StLTP10 in resistance to P. infestans and suggest candidates to enhance broad-spectrum resistance to pathogens in potato.

DOI: 10.1111/mpp.13007
PubMed: 33118686


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato.</title>
<author>
<name sortKey="Wang, Chenchen" sort="Wang, Chenchen" uniqKey="Wang C" first="Chenchen" last="Wang">Chenchen Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Hongjuan" sort="Gao, Hongjuan" uniqKey="Gao H" first="Hongjuan" last="Gao">Hongjuan Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chu, Zhaohui" sort="Chu, Zhaohui" uniqKey="Chu Z" first="Zhaohui" last="Chu">Zhaohui Chu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ji, Changquan" sort="Ji, Changquan" uniqKey="Ji C" first="Changquan" last="Ji">Changquan Ji</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Yang" sort="Xu, Yang" uniqKey="Xu Y" first="Yang" last="Xu">Yang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, Weilin" sort="Cao, Weilin" uniqKey="Cao W" first="Weilin" last="Cao">Weilin Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shumei" sort="Zhou, Shumei" uniqKey="Zhou S" first="Shumei" last="Zhou">Shumei Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Yunzhi" sort="Song, Yunzhi" uniqKey="Song Y" first="Yunzhi" last="Song">Yunzhi Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hongmei" sort="Liu, Hongmei" uniqKey="Liu H" first="Hongmei" last="Liu">Hongmei Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Changxiang" sort="Zhu, Changxiang" uniqKey="Zhu C" first="Changxiang" last="Zhu">Changxiang Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33118686</idno>
<idno type="pmid">33118686</idno>
<idno type="doi">10.1111/mpp.13007</idno>
<idno type="wicri:Area/Main/Corpus">000016</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000016</idno>
<idno type="wicri:Area/Main/Curation">000016</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000016</idno>
<idno type="wicri:Area/Main/Exploration">000016</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato.</title>
<author>
<name sortKey="Wang, Chenchen" sort="Wang, Chenchen" uniqKey="Wang C" first="Chenchen" last="Wang">Chenchen Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Hongjuan" sort="Gao, Hongjuan" uniqKey="Gao H" first="Hongjuan" last="Gao">Hongjuan Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chu, Zhaohui" sort="Chu, Zhaohui" uniqKey="Chu Z" first="Zhaohui" last="Chu">Zhaohui Chu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ji, Changquan" sort="Ji, Changquan" uniqKey="Ji C" first="Changquan" last="Ji">Changquan Ji</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Yang" sort="Xu, Yang" uniqKey="Xu Y" first="Yang" last="Xu">Yang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, Weilin" sort="Cao, Weilin" uniqKey="Cao W" first="Weilin" last="Cao">Weilin Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shumei" sort="Zhou, Shumei" uniqKey="Zhou S" first="Shumei" last="Zhou">Shumei Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Yunzhi" sort="Song, Yunzhi" uniqKey="Song Y" first="Yunzhi" last="Song">Yunzhi Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hongmei" sort="Liu, Hongmei" uniqKey="Liu H" first="Hongmei" last="Liu">Hongmei Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Changxiang" sort="Zhu, Changxiang" uniqKey="Zhu C" first="Changxiang" last="Zhu">Changxiang Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong</wicri:regionArea>
<wicri:noRegion>Shandong</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nonspecific lipidtransfer proteins (nsLTPs), which are small, cysteine-rich proteins, belong to the pathogenesis-related protein family, and several of them act as positive regulators during plant disease resistance. However, the underlying molecular mechanisms of these proteins in plant immune responses are unclear. In this study, a typical nsLTP gene, StLTP10, was identified and functionally analysed in potato. StLTP10 expression was significantly induced by Phytophthora infestans, which causes late blight in potato, and defence-related phytohormones, including abscisic acid (ABA), salicylic acid, and jasmonic acid. Characterization of StLTP10-overexpressing and knockdown lines indicated that StLTP10 positively regulates plant resistance to P. infestans. This resistance was coupled with enhanced expression of reactive oxygen species scavenging- and defence-related genes. Furthermore, we identified that StLTP10 physically interacts with ABA receptor PYL4 and affects its subcellular localization. These two proteins work together to regulate stomatal closure during pathogen infection. Interestingly, we also found that wound-induced protein kinase interacts with StLTP10 and positively regulates its protein abundance. Taken together, our results provide insight into the role of StLTP10 in resistance to P. infestans and suggest candidates to enhance broad-spectrum resistance to pathogens in potato.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33118686</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mpp.13007</ELocationID>
<Abstract>
<AbstractText>Nonspecific lipidtransfer proteins (nsLTPs), which are small, cysteine-rich proteins, belong to the pathogenesis-related protein family, and several of them act as positive regulators during plant disease resistance. However, the underlying molecular mechanisms of these proteins in plant immune responses are unclear. In this study, a typical nsLTP gene, StLTP10, was identified and functionally analysed in potato. StLTP10 expression was significantly induced by Phytophthora infestans, which causes late blight in potato, and defence-related phytohormones, including abscisic acid (ABA), salicylic acid, and jasmonic acid. Characterization of StLTP10-overexpressing and knockdown lines indicated that StLTP10 positively regulates plant resistance to P. infestans. This resistance was coupled with enhanced expression of reactive oxygen species scavenging- and defence-related genes. Furthermore, we identified that StLTP10 physically interacts with ABA receptor PYL4 and affects its subcellular localization. These two proteins work together to regulate stomatal closure during pathogen infection. Interestingly, we also found that wound-induced protein kinase interacts with StLTP10 and positively regulates its protein abundance. Taken together, our results provide insight into the role of StLTP10 in resistance to P. infestans and suggest candidates to enhance broad-spectrum resistance to pathogens in potato.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Chenchen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Hongjuan</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Zhaohui</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8320-7872</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Changquan</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Weilin</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Shumei</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yunzhi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hongmei</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Changxiang</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5640-6312</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ZR2019MC009</GrantID>
<Agency>Natural Science Foundation of Shandong Province</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2016ZX08001-002</GrantID>
<Agency>China National Transgenic Plant Research and Commercialization Project</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora infestans </Keyword>
<Keyword MajorTopicYN="N">PYL4</Keyword>
<Keyword MajorTopicYN="N">StLTP10</Keyword>
<Keyword MajorTopicYN="N">WIPK</Keyword>
<Keyword MajorTopicYN="N">abscisic acid</Keyword>
<Keyword MajorTopicYN="N">potato</Keyword>
<Keyword MajorTopicYN="N">stomatal closure</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>8</Hour>
<Minute>41</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33118686</ArticleId>
<ArticleId IdType="doi">10.1111/mpp.13007</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Boevink, P.C., Birch, P.R.J., Turnbull, D. and Whisson, S.C. (2020) Devastating intimacy: the cell biology of plant-Phytophthora interactions. New Phytologist, 228, 445-458.</Citation>
</Reference>
<Reference>
<Citation>Brigneti, G., Martín-Hernández, A.M., Jin, H., Chen, J., Baulcombe, D.C., Baker, B. et al. (2004) Virus-induced gene silencing in Solanum species. The Plant Journal, 39, 264-272.</Citation>
</Reference>
<Reference>
<Citation>Chae, K., Kieslich, C.A., Morikis, D., Kim, S.C. and Lord, E.M. (2009) A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. The Plant Cell, 21, 3902-3914.</Citation>
</Reference>
<Reference>
<Citation>Chen, H.H., Qu, L., Xu, Z.H., Zhu, J.K. and Xue, H.W. (2018) EL1-like casein kinases suppress ABA signaling and responses by phosphorylating and destabilizing the ABA receptors PYR/PYLs in Arabidopsis. Molecular Plant, 11, 706-719.</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Luan, Y., Jiang, N., Bao, H. and Meng, J. (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. The Plant Journal, 89, 577-589.</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Xu, P., Meng, J., Li, J., Jiang, N. and Luan, Y. (2018) Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3. Theoretical & Applied Genetics, 131, 787-800.</Citation>
</Reference>
<Reference>
<Citation>Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. and Abrams, S.R. (2010) Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology, 61, 651-679.</Citation>
</Reference>
<Reference>
<Citation>Diaz, M., Sanchez-Barrena, M.J., Gonzalez-Rubio, J.M., Rodriguez, L., Fernandez, D., Antoni, R. et al. (2016) Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proceedings of the National Academy of Sciences of the United States of America, 113, E396-405.</Citation>
</Reference>
<Reference>
<Citation>Dodds, P. and Rathjen, J. (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11, 539-548.</Citation>
</Reference>
<Reference>
<Citation>Du, M., Zhai, Q., Deng, L., Li, S., Li, H., Yan, L. et al. (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. The Plant Cell, 26, 3167-3184.</Citation>
</Reference>
<Reference>
<Citation>Farrell, G.M., Preece, T.F. and Wren, M.J. (1969) Effects of infection by Phytophthora infestans on the stomata of potato leaves. Annals of Applied Biology, 63, 265-275.</Citation>
</Reference>
<Reference>
<Citation>Gangadhar, B.H., Sajeesh, K., Venkatesh, J., Baskar, V., Abhinandan, K., Yu, J.W. et al. (2016) Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (stnsLTP1) against multiple abiotic stresses. Frontiers in Plant Science, 7, 1228.</Citation>
</Reference>
<Reference>
<Citation>Gao, G., Jin, L.P., Xie, K.Y. and Qu, D.Y. (2009) The potato StLTPa7 gene displays a complex Ca-associated pattern of expression during the early stage of potato-Ralstonia solanacearum interaction. Molecular Plant Pathology, 10, 15-27.</Citation>
</Reference>
<Reference>
<Citation>Gao, S., Guo, W., Feng, W., Liu, L., Song, X., Chen, J. et al. (2016) LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis. Molecular Plant Pathology, 17, 412-426.</Citation>
</Reference>
<Reference>
<Citation>Gudesblat, G.E., Iusem, N.D. and Morris, P.C. (2007) Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytologist, 173, 713-721.</Citation>
</Reference>
<Reference>
<Citation>Guo, L., Yang, H., Zhang, X. and Yang, S. (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. Journal of Experimental Botany, 64, 1755-1767.</Citation>
</Reference>
<Reference>
<Citation>Hellens, R., Mullineaux, P. and Klee, H. (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends in Plant Science, 5, 446-451.</Citation>
</Reference>
<Reference>
<Citation>Hoegen, E., Strömberg, A., Pihlgren, U. and Kombrink, E. (2002) Primary structure and tissue-specific expression of the pathogenesis-related protein PR-1b in potato. Molecular Plant Pathology, 3, 329-345.</Citation>
</Reference>
<Reference>
<Citation>Jacq, A., Pernot, C., Martinez, Y., Domergue, F., Payré, B., Jamet, E. et al. (2017) The Arabidopsis lipid transfer protein 2 (AtLTP2) is involved in cuticle-cell wall interface integrity and in etiolated hypocotyl permeability. Frontiers in Plant Science, 8, 263.</Citation>
</Reference>
<Reference>
<Citation>Jones, J.D. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323-329.</Citation>
</Reference>
<Reference>
<Citation>Judelson, H.S. and Ah-Fong, A.M.V. (2019) Exchanges at the plant-oomycete interface that influence disease. Plant Physiology, 179, 1198-1211.</Citation>
</Reference>
<Reference>
<Citation>Jung, H.W., Lim, C.W. and Hwang, B.K. (2006) Isolation and functional analysis of a pepper lipid transfer protein III (CALTPIII) gene promoter during signaling to pathogen, abiotic and environmental stresses. Plant Science, 170, 258-266.</Citation>
</Reference>
<Reference>
<Citation>Kader, J.C. (1975) Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochimica et Biophysica Acta, 380, 31-44.</Citation>
</Reference>
<Reference>
<Citation>Kamoun, S., Furzer, O., Jones, J.D., Judelson, H.S., Ali, G.S., Dalio, R.J. et al. (2015) The top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 16, 413-434.</Citation>
</Reference>
<Reference>
<Citation>Khare, N., Goyary, D., Singh, N.K., Shah, P., Rathore, M., Anandhan, S. et al. (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue and Organ Culture, 103, 267-277.</Citation>
</Reference>
<Reference>
<Citation>Kim, T.H., Böhmer, M., Hu, H., Nishimura, N. and Schroeder, J.I. (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561-591.</Citation>
</Reference>
<Reference>
<Citation>Kumar, A.S., Lakshmanan, V., Caplan, J.L., Powell, D., Czymmek, K.J., Levia, D.F. et al. (2012) Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. The Plant Journal, 72, 694-706.</Citation>
</Reference>
<Reference>
<Citation>Leon-Kloosterziel, K.M., Gil, M.A., Ruijs, G.J., Jacobsen, S.E., Olszewski, N.E., Schwartz, S.H., Zeevaart, J.A.D. et al. (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. The Plant Journal, 10, 655-661.</Citation>
</Reference>
<Reference>
<Citation>Li, X., Huang, L., Zhang, Y., Ouyang, Z., Hong, Y., Zhang, H. et al. (2014) Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. BMC Plant Biology, 14, 286.</Citation>
</Reference>
<Reference>
<Citation>Li, J., Luan, Y. and Liu, Z. (2015) SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato. Plant Cell Tissue and Organ Culture, 123, 67-81.</Citation>
</Reference>
<Reference>
<Citation>Lim, C.W., Luan, S. and Lee, S.C. (2014) A prominent role for RCAR3-mediated ABA signaling in response to Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis. Plant Cell Physiology., 55, 1691-1703.</Citation>
</Reference>
<Reference>
<Citation>Liu, L., Zhang, Y., Tang, S., Zhao, Q., Zhang, Z., Zhang, H. et al. (2010) An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. The Plant Journal, 61, 893-903.</Citation>
</Reference>
<Reference>
<Citation>Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. et al. (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324, 1064-1068.</Citation>
</Reference>
<Reference>
<Citation>Maldonado, A.M., Doerner, P., Dixon, R.A., Lamb, C.J. and Cameron, R.K. (2002) A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature, 419, 399-403.</Citation>
</Reference>
<Reference>
<Citation>Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z. and Zhang, S. (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. The Plant Cell, 23, 1639-1653.</Citation>
</Reference>
<Reference>
<Citation>Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S.Y. (2006) Plant stomata function in innate immunity against bacterial invasion. Cell, 126, 969-980.</Citation>
</Reference>
<Reference>
<Citation>Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F. and Giraudat, J. (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell, 14, 3089-3099.</Citation>
</Reference>
<Reference>
<Citation>Nishimura, N., Sarkeshik, A., Nito, K., Park, S.Y., Wang, A., Carvalho, P.C. et al. (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. The Plant Journal, 61, 290-299.</Citation>
</Reference>
<Reference>
<Citation>Nowicki, M., Fooled, M.R., Nowakowska, M. and Kozik, E.U. (2012) Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease, 96, 4-17.</Citation>
</Reference>
<Reference>
<Citation>Orłowska, E., Fiil, A., Kirk, H.G., Llorente, B. and Cvitanich, C. (2012) Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. Plant Cell Reports, 31, 187-203.</Citation>
</Reference>
<Reference>
<Citation>Ostergaard, J., Vergnolle, C., Schoentgen, F. and Kader, J.C. (1993) Acyl-binding lipid-transfer proteins from rape seedlings, a novel category of proteins interacting with lipids. Biochimica et Biophysica Acta - Biomembranes, 1170, 109-117.</Citation>
</Reference>
<Reference>
<Citation>Persak, H. and Pitzschke, A. (2013) Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signaling. PLoS One, 8, e57547.</Citation>
</Reference>
<Reference>
<Citation>Pitzschke, A., Datta, S. and Persak, H. (2014) Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Molecular Plant, 7, 722-738.</Citation>
</Reference>
<Reference>
<Citation>Potocka, I., Baldwin, T.C. and Kurczynska, E.U. (2012) Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Reports, 31, 2031-2045.</Citation>
</Reference>
<Reference>
<Citation>Qin, T., Tian, Q., Wang, G. and Xiong, L. (2019) LOWER TEMPERATURE 1 enhances ABA responses and plant drought tolerance by modulating the stability and localization of C2-domain ABA-related proteins in Arabidopsis. Molecular Plant, 12, 1243-1258.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez, L., Gonzalez-Guzman, M., Diaz, M., Rodrigues, A., Izquierdo-Garcia, A.C., Peirats-Llobet, M. et al. (2014) C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. The Plant Cell, 26, 4802-4820.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez, M.C., Petersen, M. and Mundy, J. (2010) Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology, 61, 621-649.</Citation>
</Reference>
<Reference>
<Citation>Ruszala, E.M., Beerling, D.J., Franks, P.J., Chater, C., Casson, S.A., Gray, J.E. et al. (2011) Land plants acquired active stomatal control early in their evolutionary history. Current Biology, 21, 1030-1035.</Citation>
</Reference>
<Reference>
<Citation>Šamajová, O., Plíhal, O., Al-Yousif, M., Hirt, H. and Šamaj, J. (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnology Advances, 31, 118-128.</Citation>
</Reference>
<Reference>
<Citation>Sarowar, S., Kim, Y.J., Kim, K.D., Hwang, B.K., Ok, S.H. and Shin, J.S. (2009) Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Reports, 28, 419-427.</Citation>
</Reference>
<Reference>
<Citation>Seo, P.J., Lee, A.K., Xiang, F. and Park, C.M. (2008) Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant & Cell Physiology, 49, 334-344.</Citation>
</Reference>
<Reference>
<Citation>Song, W., Ma, X., Tan, H. and Zhou, J. (2011) Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiology and Biochemistry, 49, 693-700.</Citation>
</Reference>
<Reference>
<Citation>Su, J., Zhang, M., Zhang, L., Sun, T., Liu, Y., Lukowitz, W. et al. (2017) Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. The Plant Cell, 29, 526-542.</Citation>
</Reference>
<Reference>
<Citation>Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K. et al. (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 106, 17588-17593.</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Gao, C., Li, L., Cao, W., Dong, R., Ding, X. et al. (2019) Transgenic RXLR effector PITG_15718.2 suppresses immunity and reduces vegetative growth in potato. International Journal of Molecular Sciences, 20, 3031.</Citation>
</Reference>
<Reference>
<Citation>Wang, N.J., Lee, C.C., Cheng, C.S., Lo, W.C., Yang, Y.F., Chen, M.N. et al. (2012) Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB). BMC Genomics, 13(Suppl 1), S9.</Citation>
</Reference>
<Reference>
<Citation>Xu, Y., Zheng, X., Song, Y., Zhu, L., Yu, Z., Gan, L. et al. (2018) NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Scientific Reports, 8, 8873.</Citation>
</Reference>
<Reference>
<Citation>Xu, Z.Y., Zhang, X., Schläppi, M. and Xu, Z.Q. (2011) Cold-inducible expression of AZI1 and its function in improvement of freezing tolerance of Arabidopsis thaliana and Saccharomyces cerevisiae. Journal of Plant Physiology, 168, 1576-1587.</Citation>
</Reference>
<Reference>
<Citation>Yang, G., Tang, L., Gong, Y., Xie, J., Fu, Y., Jiang, D. et al. (2017) A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytologist, 217, 739-755.</Citation>
</Reference>
<Reference>
<Citation>Zeng, L., Zhou, J., Li, B. and Xing, D. (2015) A high-sensitivity optical device for the early monitoring of plant pathogen attack via the in vivo detection of ROS bursts. Frontiers in Plant Science, 6, 96.</Citation>
</Reference>
<Reference>
<Citation>Zeng, W. and He, S.Y. (2010) A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology, 153, 1188-1198.</Citation>
</Reference>
<Reference>
<Citation>Zhao, Q., Tian, M., Li, Q., Cui, F., Liu, L., Yin, B. et al. (2013) A plant-specific in vitro ubiquitination analysis system. The Plant Journal, 74, 524-533.</Citation>
</Reference>
<Reference>
<Citation>Zheng, X.Y., Zhou, M., Yoo, H., Pruneda-Paz, J.L., Spivey, N.W., Kay, S.A. et al. (2015) Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 112, 9166-9173.</Citation>
</Reference>
<Reference>
<Citation>Zhou, X.T., Jia, L.J., Wang, H.Y., Zhao, P., Wang, W.Y., Liu, N. et al. (2018) The potato transcription factor StbZIP61 regulates dynamic biosynthesis of salicylic acid in defense against Phytophthora infestans infection. The Plant Journal, 95, 1055-1068.</Citation>
</Reference>
<Reference>
<Citation>Zhu, Y., Schluttenhoffer, C.M., Wang, P., Fu, F., Thimmapuram, J., Zhu, J.K. et al. (2014) CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. The Plant Cell, 26, 4149-4170.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Chenchen" sort="Wang, Chenchen" uniqKey="Wang C" first="Chenchen" last="Wang">Chenchen Wang</name>
</noRegion>
<name sortKey="Cao, Weilin" sort="Cao, Weilin" uniqKey="Cao W" first="Weilin" last="Cao">Weilin Cao</name>
<name sortKey="Chu, Zhaohui" sort="Chu, Zhaohui" uniqKey="Chu Z" first="Zhaohui" last="Chu">Zhaohui Chu</name>
<name sortKey="Gao, Hongjuan" sort="Gao, Hongjuan" uniqKey="Gao H" first="Hongjuan" last="Gao">Hongjuan Gao</name>
<name sortKey="Ji, Changquan" sort="Ji, Changquan" uniqKey="Ji C" first="Changquan" last="Ji">Changquan Ji</name>
<name sortKey="Liu, Hongmei" sort="Liu, Hongmei" uniqKey="Liu H" first="Hongmei" last="Liu">Hongmei Liu</name>
<name sortKey="Song, Yunzhi" sort="Song, Yunzhi" uniqKey="Song Y" first="Yunzhi" last="Song">Yunzhi Song</name>
<name sortKey="Xu, Yang" sort="Xu, Yang" uniqKey="Xu Y" first="Yang" last="Xu">Yang Xu</name>
<name sortKey="Zhou, Shumei" sort="Zhou, Shumei" uniqKey="Zhou S" first="Shumei" last="Zhou">Shumei Zhou</name>
<name sortKey="Zhu, Changxiang" sort="Zhu, Changxiang" uniqKey="Zhu C" first="Changxiang" last="Zhu">Changxiang Zhu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000317 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000317 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33118686
   |texte=   A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33118686" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024